
494 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 2, FEBRUARY 2010

GPU-Based Shooting and Bouncing Ray Method for
Fast RCS Prediction

Yubo Tao, Hai Lin, and Hujun Bao

Abstract—The shooting and bouncing ray (SBR) method is
highly effective in the radar cross section (RCS) prediction. For
electrically large and complex targets, computing scattered fields
is still time-consuming in many applications like range profile and
ISAR simulation. In this paper, we propose a GPU-based SBR that
is fully implemented on the graphics processing unit (GPU). Based
on the stackless kd-tree traversal algorithm, the ray tube tracing
can rapidly evaluate the exit position in a single pass on the GPU.
We also present a technique for fast electromagnetic computing
that allows the geometric optics (GO) and Physical optics (PO) in-
tegral to be carried out on the GPU efficiently during the ray tube
tracing. Numerical experiments demonstrate that the GPU-based
SBR can significantly improve the computational efficiency of the
RCS prediction, about 30 times faster, while providing the same
accuracy as the CPU-based SBR.

Index Terms—Compute unified device architecture (CUDA),
graphics processing unit (GPU), kd-tree, radar cross section
(RCS), ray tracing, shooting and bouncing ray (SBR).

I. INTRODUCTION

T HE shooting and bouncing ray (SBR) [1], [2] method is a
popular and effective technique for the Radar Cross Sec-

tion (RCS) prediction of arbitrarily shaped targets. This is be-
cause the ray tube makes the SBR clear in the concept of physics
and also makes it easy to be implemented. More importantly,
besides the first-order scattered fields, the SBR provides more
accurate results by including the scattered fields arising from
multiple bounces.

The procedure of the SBR involves two steps: ray tube tracing
and electromagnetic computing, as illustrated in Fig. 1. The in-
cident plane wave is modeled as a dense grid of ray tubes, which
are shot toward the target. Each corner ray of ray tubes is recur-
sively traced to obtain the exit position. The exit position and
field of the central ray are also evaluated via ray tracing, in which
the reflected field is calculated according to the law of geomet-
rical optics (GO) [3]. Finally, the physical optics (PO) integral is
preformed to obtain the scattered field of this ray tube based on
the pre-calculated exit positions and field. All scattered fields of
ray tubes are summed to produce the scattered field of the target.

Manuscript received November 29, 2008; revised September 11, 2009. First
published December 04, 2009; current version published February 03, 2010.
This work was supported in part by the National Hi-Tech Research and Devel-
opment Program of China under Grant 2002AA135020.

The authors are with the State Key Laboratory of CAD&CG, Zhejiang Uni-
versity, Hangzhou 310058, China (e-mail: lin@cad.zju.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2009.2037694

Fig. 1. The illustration of the SBR method for calculating the RCS of the tri-
hedral corner reflector.

The SBR method is more effective than other numerical
methods, such as the method of moments (MoM), for the
high-frequency RCS prediction. However, both the ray tube
tracing and electromagnetic computing are very time-con-
suming for electrically large and complex targets [4]. The total
number of ray tubes depends on the electrical size of the target,
since the density of ray tubes on the virtual aperture perpen-
dicular to the incident direction should be greater than about
ten rays per wavelength in view of the convergence of results.
This requirement enormously increases the computational
amount of ray tube tracing and the PO integral for electrically
large targets. Moreover, if the target is described in terms of
triangles, the number of intersection tests for each ray without
any acceleration is proportional to the number of triangles,
which further aggravates the computational burden of ray tube
tracing. Due to such two compute-intensive steps, the SBR
method is still not fast enough for applications such as range
profile and ISAR simulation of real targets.

In order to reduce the computation time, various acceleration
techniques have been proposed. Sundararajan and Niamat [4]
presented the ray-box intersection algorithm in FPGA to concur-
rently determine whether rays hit or miss the bounding box of
the target. Suk et al. [5] introduced the multiresolution grid algo-
rithm to reduce the initial number of ray tubes. Jin et al. [6] uti-
lized the octree, recursively subdividing the box into eight chil-
dren boxes using three axis-perpendicular planes, to decrease
the number of intersection tests. Bang et al. [7] extended this
work with a combination of the grid division and space division
algorithms. As the kd-tree, recursively subdividing the box into
two uneven boxes using one axis-perpendicular plane, has been
proved as the best general-purpose acceleration structure for ray

0018-926X/$26.00 © 2009 IEEE

Authorized licensed use limited to: Zhejiang University. Downloaded on February 27,2010 at 06:27:45 EST from IEEE Xplore. Restrictions apply.

TAO et al.: GPU-BASED SHOOTING AND BOUNCING RAY METHOD FOR FAST RCS PREDICTION 495

Fig. 2. The procedure of GPU-based SBR. The gray polygon is the projection of the target on the virtual aperture. The first step is to recursively trace rays on
the grid (the virtual aperture). The intersected rays are shown as solid dots on the left. The next step is checking the validity of ray tubes, and only valid ray tubes
need to trace the central ray and calculate the scattered field. Valid ray tubes are marked with the dot on the center of ray tubes in the middle. The final step is to
reduce scattered fields of valid ray tubes to the scattered field of the target. All these steps are performed in a multithreaded manner on CUDA GPU Computing
environment.

tracing of static scenes in computer graphics [8], Tao et al. [9]
suggested utilizing the kd-tree to accelerate the ray tube tracing
of the SBR.

Over the past few years, with the rapid development of
graphics hardware, especially the programmability of graphics
processing units (GPUs), commodity graphics hardware pro-
vides large memory bandwidth and high computing power
in general-purpose processing, which is known as GPGPU
(general-purpose processing on the GPU) [10]. Compute
unified device architecture (CUDA) developed by NVIDIA
offers an effective way to directly access the massively par-
allel computing resources on the GPU and is specialized for
computationally demanding, highly parallel tasks [11]. Many
have reported success in performing general-purpose parallel
computation on CUDA, such as molecular dynamics simula-
tions [12] and fast multipole methods [13]. In this paper, we
are interested in utilizing the GPU to accelerate both ray tube
tracing and electromagnetic computing of the SBR.

It is obvious that ray tracing is well suitable for parallel
processing due to the independence of rays. Carr et al. [14] first
implemented the ray-triangle intersection on the GPU in 2002,
while Purcell et al. [15] presented a GPU ray tracing algorithm
in multiple passes using a uniform grid as the acceleration
structure in the same year. Due to the lack of stack support
on the GPU, Foley and Sugerman [16] introduced two kd-tree
traversal algorithms on the GPU, kd-restart and kd-backtrack,
which both eliminate the need of a stack during the kd-tree
traversal; subsequently, they extended the kd-restart algorithm
from multiple passes to a single pass using branching and
looping abilities of the GPU [17]. Recently, Popov et al. [18]
developed a stackless kd-tree traversal implementation using
CUDA, and the kd-tree augmented with ropes reduces the re-
dundant traversal steps of interior nodes. The GPU ray tracing
in computer graphics focuses mainly on ray casting (primitive
rays). However, ray tube tracing in the SBR requires taking into
account multiple bounces, and is more concerned about the exit
position and field for the next electromagnetic computing. It is
necessary, therefore, to adapt the existing GPU ray tracing to
satisfy the requirement of ray tube tracing.

Graphics hardware has been employed in computational elec-
tromagnetics as early as 1993. Graphical electromagnetic com-
puting (GRECO) [19], [20] method is the first proposal of using
graphics hardware to accelerate computations of the first-order
scattered fields of visible surfaces and wedges of the target. The
identification of surfaces and wedges visible from the incident
direction can be rapidly obtained through the Z-Buffer of work-
station graphics hardware. The electromagnetic computing part
of GRECO has been moved to graphics hardware by using the
programmable GPU, which greatly improved the computational
efficiency of the RCS prediction [21], [22]. If only the first-order
scattered field is considered, the proposed GPU-based SBR is
similar to the GRECO method, using ray tracing instead of ras-
terization to identify visible surfaces. However, we further take
into account the calculation of the multiple-order scattered fields
on graphics hardware. Inman and Elsherbeni [23] discussed the
GPU implementation of FDTD and obtained a speedup factor
of 40 in 2D case and 14 in 3D case. Recently, Peng and Nie [24]
proposed the GPU accelerated method of moments and achieved
an acceleration ratio about 20.

In summary, we present a GPU-based SBR, in which ray tube
tracing and electromagnetic computing are fully implemented
on CUDA GPU Computing environment. Ray tube tracing is
based on the stackless kd-tree traversal algorithm, which is mod-
ified to evaluate the exit position and field quickly. Electro-
magnetic computing is integrated into the process of central
ray tracing, including the evaluation of the reflected field using
the GO and the scattered field using the PO integral. The pro-
posed approach can significantly accelerate the RCS prediction
for electrically large and complex targets.

II. GPU-BASED SBR

CUDA GPU Computing environment can be thought of
as programming massively parallel processors. A 32-thread
warp operates in the Single Instruction Multiple Data (SIMD)
fashion, i.e., 32 threads execute the same instruction on different
data simultaneously. A thread block is composed of several
warps, and these warps run in the single program multiple data

Authorized licensed use limited to: Zhejiang University. Downloaded on February 27,2010 at 06:27:45 EST from IEEE Xplore. Restrictions apply.

496 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 2, FEBRUARY 2010

(SPMD) fashion. In addition, CUDA also processes multiple
thread blocks in the SPMD fashion at one time.

As ray tubes are evaluated independently, without ac-
cess to others, the SBR can be easily restructured into the
multi-threaded fashion. As illustrated in Fig. 2, the procedure
of GPU-based SBR is divided into three steps, and each step
executes one kernel (program) on CUDA in a multi-threaded
manner while synchronizing these threads of each kernel on
the CPU. When the grid of ray tubes on the virtual aperture is
determined, the first step is to recursively trace the corner rays
of ray tubes in parallel to obtain the exit positions. Corner rays
shared by neighbor ray tubes need to be traced only once. In
the second step, each thread deals with one ray tube. It firstly
checks the validity of the ray tube, then traces the central ray of
the valid ray tube recursively and calculates the reflected field
during the central ray tracing, finally performs the PO integral
to obtain the scattered field of the ray tube. The scattered field
of the target is given through the parallel reduction of scattered
fields of ray tubes on CUDA. The details of these steps are
discussed in Sections II-A through II-C.

A. Corner Ray Tracing

Given the incident direction of the electromagnetic wave, we
can construct the virtual aperture perpendicular to the incident
direction and divide it into a dense grid of ray tubes according
to the criterion of ten rays per wavelength. The grid should be
large enough to cover at least the projected area of the target.
Since ray tracing is required for the corner and central rays of
ray tubes, we describe the implementation of ray tracing on the
GPU in detail, which is based on the stackless kd-tree traversal
algorithm [18].

The kd-tree is a variation of the binary space partitioning tree
and it is constructed by recursively employing the axis-perpen-
dicular plane to split the target space into uneven axis-aligned
boxes. The choice of the splitting plane is based on the ray-
tracing cost estimation model, in which the cost consists of the
traversal time of interior nodes and the ray-triangles intersec-
tion time of leaf nodes. The best known heuristic is the greedy
Surface Area Heuristic (SAH) [25] that minimizes the cost for
the node individually to construct the approximately optimal
kd-tree. Triangles of the spitted node are then associated with
one child node they overlap in space, and if the triangle is across
the splitting plane, it should be associated with both children
nodes. These two children nodes are then processed recursively
until the termination condition is satisfied, such as the number
of triangles of the node less than the user-defined number and
no benefit to further split the node. While the octree simply puts
the splitting positions at the middle point of the extend in each
direction, the kd-tree takes into account the triangle distribution
in the target space to find the optimal splitting axis and posi-
tion. As a result, the kd-tree can provide faster ray tracing than
the octree for general scenes. A simple 2D kd-tree is shown in
Fig. 3(a). The detail of fast kd-tree construction is well described
in Pharr and Humphreys’ book [26].

The kd-tree can be augmented with ropes in leaf nodes. The
rope on each face of leaf nodes is a pointer to the adjacent
leaf node, the smallest interior node including all adjacent leaf

Fig. 3. 2D kd-tree. (a) A simple 2D kd-tree. Interior nodes are labeled as their
splitting planes and leaf nodes are labeled in their boxes. (b) A graph represen-
tation of the same 2D kd-tree. Each leaf node has four ropes on the face and
these ropes directly link the adjacent leaf node, the smallest interior node or a
nil node.

nodes or a nil node for leaf nodes on the border. During the tra-
versal, the ray passing through a leaf node can directly move
onto the adjacent node through its exit rope avoiding the re-
quirement of the stack to keep to-be-visited nodes, and subse-
quently this manner removes the unnecessary traversal steps of
interior nodes. The graph representation of the same 2D kd-tree
of Fig. 3(a) is illustrated in Fig. 3(b), and four ropes of the leaf
node are also shown. The rope is constructed during the cre-
ation of kd-tree offline on the CPU, and the algorithm for rope
optimization can be found in [18].

Once the kd-tree with ropes is constructed, the rays for all in-
cident and reflected directions could be traced efficiently. Ray
tracing in the SBR is slightly different from ray tracing in com-
puter graphics. This is mainly because ray tracing in the SBR
puts more emphasis on the exit position and field rather than in-
termediate radiance contributions. Since ray tracing in computer
graphics often finds one intersection in one pass, we recast the
algorithm to find all intersections in a single pass (Algorithm I),
and the results are stored in the device memory on the GPU for
the next electromagnetic computing.

Ray tracing in the SBR starts with the root node of the kd-tree
with ropes, and determines the entry position through the inter-
section of the ray and the bounding box of the target. At the
interior node, one of the two child nodes is selected to continue
the traversal according to the relative position between the entry
position and the splitting plane. If the entry position is on the left
of the splitting plane, the left child needs to be traversed next.
Otherwise, the traversal continues to the right child. Following
the above rules, the kd-tree is recursively traversed down until
a leaf node is encountered.

At the leaf node, we first determine the exit face of the ray
on the leaf node’s boundary box and the (,) range,
which defines the part of the ray that is inside the leaf node.
Then the ray is iteratively tested for intersection with triangles
of the leaf node to find the nearest intersection, . Actually,
the nearest intersection found may not be inside the current leaf
node. However, we can compare with to determine the
exact leaf node where the intersection is located.

If the ray does not intersect any triangle of this leaf node or the
nearest intersection is not inside this leaf node ,
the traversal continues to the adjacent node through the rope on
the exit face. If the adjacent node is the nil node, the ray goes off
the target, and then the last intersection position and the triangle

Authorized licensed use limited to: Zhejiang University. Downloaded on February 27,2010 at 06:27:45 EST from IEEE Xplore. Restrictions apply.

TAO et al.: GPU-BASED SHOOTING AND BOUNCING RAY METHOD FOR FAST RCS PREDICTION 497

Algorithm I Single-pass Ray Tracing

while and do

// process interior nodes
while do

if then

else

end if
end while

// intersection test with the triangles in the leaf node

for in do

if and then

end if
end for

// check intersection
if and then

// generate the reflected ray

else
// follow the rope of the exit face

end if
end while
return

ID, if any, are stored for the next electromagnetic computing.
Otherwise, if the nearest intersection along the ray is inside this
leaf node, the origin and direction of the ray are replaced with
the intersection position and the reflected direction respectively,
and the traversal continues to this leaf node with the reflected
ray. If the number of intersections is larger than the maximum
order of the reflection, the traversal terminates, and then the last
intersection position and the triangle ID are also stored for the
next electromagnetic computing.

From the description above, the proposed single-pass ray
tracing not only utilizes the ropes to reduce the number of inte-
rior-node traversal steps for the primary ray, but also directly
starts at the leaf node containing the origin of the ray to further
eliminate interior-node traversal steps for the reflected ray. An
illustration of the proposed ray tracing in 2D is shown in Fig. 4.
In this way, each corner ray of ray tubes is recursively traced in
parallel on CUDA, and the exit position and the corresponding
triangle ID are evaluated and stored in the device memory on
the GPU for the following electromagnetic computing.

B. Central Ray Tracing and Electromagnetic Computing

With the knowledge of the exit position and the triangle ID of
each corner of ray tubes, the scattered field of ray tubes could
be calculated in a multi-threaded manner on CUDA. This pro-
cedure involves three parts.

The first part is to check the validity of the ray tube. If any
one corner ray of the ray tube does not intersect the target, this
ray tube is invalid. Invalid ray tubes need not trace the central
ray and calculate the scattered field. Besides this simple rule,
other stricter rules are required to judge whether the ray tube
diverges in the recursive corner ray tracing. However, it is diffi-
cult to determine the divergence of ray tubes accurately due to
the discrete sampling. The last intersected triangle IDs of four
corner rays are also examined in our implementation. If the last
intersected triangles are not the same triangle, the ray tube is
highly divergent in the ray tube tracing and is discard as the in-
valid ray tube.

Each valid ray tube constructs the central ray, and the central
ray is recursively traced in a similar fashion like the corner ray.
The primary difference is the field tracing. At each intersection,
the GO is applied to calculate the reflected field through the
field before the intersection and the geometric information of
the target as follows:

(1)

where , , ,

, and . The vector

is the propagation direction before the intersection, is the
propagation direction after the intersection, and is the normal
of the intersection. The incident field is and the reflected
field is . The detail formulas about
the reflection coefficients are explained in [1], [3]. Therefore,
after the central ray tracing, both the exit position and field of
the central ray could be obtained.

The exit ray tube is modeled as a four-sided polygon calcu-
lated from the corner ray tracing. The scattered filed of the ray
tube can be approximated by the PO integral as follows:

(2)

Authorized licensed use limited to: Zhejiang University. Downloaded on February 27,2010 at 06:27:45 EST from IEEE Xplore. Restrictions apply.

498 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 2, FEBRUARY 2010

where is the observation direction. The can be
expressed as the exit field of the four-sided polygon

(3)

As pointed out in [2], the coefficients and in the EH for-
mulation(0.5) provide a better result. Under the assumption that
the field on the exit ray tube has the same amplitude and a linear
phase variation with the exit field of the central ray, the PO inte-
gral can be approximated in a more computable form as shown
in [2]. As a result, the scattered field for both the vertical and
horizontal polarization can be calculated, and the final results
are 12 floating-point numbers. In order to reduce the number of
outputs, the complex results of vv, vh, hv, and hh polarization
are produced, and these 8 floating-point numbers are stored in
the device memory on the GPU.

C. Field Reduction

When scattered fields of ray tubes are available, the scattered
field of the target can be easily obtained by summing up these
scattered fields. Although current graphics hardware provides
high memory bandwidth between the CPU and GPU, the sum-
ming on the CPU are not very effective due to the low memory
access on the CPU as shown in [22]. The scan primitives such
as the prefix-sum algorithm for GPU computing have been well
studied recently [27], [28] and the parallel reduction on CUDA
can be implemented in a similar way. The expected complexity
of this parallel reduction for elements is . Therefore,
the reduction of scattered fields is implemented through the scan
primitives on CUDA, and the final result, only 8 float numbers,
are read back from the device memory to the CPU.

III. IMPLEMENTATION DETAILS

In order to verify the accuracy and efficiency of the proposed
GPU-based SBR, the original SBR and the CPU kd-tree accel-
erated SBR were also implemented for comparison, and several
numerical examples were tested. These experiments were per-
formed on an NVIDIA GeForce 8800 GTX and an Intel Core
2 Duo 3.0 GHz CPU. Our implementation ran atop Windows
XP with the CUDA Toolkit 1.1. As all future NVIDIA GPUs
will support CUDA, the proposed GPU-based SBR is scalable
across future generations.

CUDA provides a simple and general C language interface
to the hardware functionality on GeForce 8800, so it is pos-
sible that the GPU can be directly utilized as a data-parallel
computing device, eliminating the special mapping between the
computation of GPGPU applications and the graphics APIs.

The kernel such as the ray tracing function is executed as a
large number of threads simultaneously on the GPU. GeForce
8800 has 16 multiprocessors, each with 8 scalar processors,
and each multiprocessor can process multiple thread blocks
concurrently. The 32-thread warp is executed in SIMD and is
the scheduled unit in the multiprocessor. The number of thread

Fig. 4. Recursive ray tracing. (a) The ray is recursively traced in the 2D target
space and has two intersections with the target. (b) The traversal path of the ray
is shown as bold lines. The traversal begins with the root node � , and proceeds
down through the interior node � and the leaf node � . The ray intersects the
triangle in the leaf node � , and the first reflected ray is generated. The first
reflected ray does not have intersection with the triangle in leaf node � , follows
the rope of the exit face to the interior node � , and moves on to the leaf node� .
The first reflected ray passes through the leaf node � without intersection, and
continues following the rope of the exit face to the leaf node � . An intersection
is found between the first reflected ray and the triangle in leaf node � , and
the second reflected ray is generated. The second reflected ray continues to be
traced, as the nil node is encountered on the exit face, ray tracing terminates.

blocks and threads per block is specified by the programmer,
and each thread has a unique thread ID and block ID to identify
the unique data assigned to each thread. Therefore, each corner
ray and tube can be specified through thread ID and block ID.

The geometry data of the target are packed and transferred
into the texture memory in the device. The texture memory is
analogous to a read-only 1D/2D array for random access. As
each multiprocessor provides a small texture cache, it speeds
up data access from the texture memory than from the global
memory. The kd-tree node and its associated triangle IDs are
also packed and transferred into the texture memory at the stage
of preprocessing, as these data structures are only dependent
on the target and not changed during the RCS prediction. Leaf
nodes require additional memory for the information about the
ropes and bounding boxes.

As there is no cache support for the global memory and the
access latency of the global memory is much higher, it is very
necessary to follow the right access pattern to obtain maximum
memory bandwidth, especially the coalescing rule. The coa-
lescing rule states that if each thread of a half-warp reads or
writes the global memory with contiguous, aligned addresses,
these operations can be coalesced into a single contiguous,
aligned memory access. The detail specification can be found
in the CUDA programming guide [11]. Therefore, the block
size in our implementation is (16, 4), as the half-warp size is
16, and we also take into account the limited register number in
each multiprocessor and the coherence of ray tracing.

The output of the corner ray tracing can be coalesced into
a single contiguous, aligned memory access, as threads in the
warp execute the same write instruction in a sequence. The
access of these data in the electromagnetic computing can
also be coalesced for the same reason. The memory access in
parallel field reduction is highly optimized using the on-chip
shared memory, and this improves the performance by elimi-
nating memory traffic to the device memory and avoiding the
bank conflicts. The shared memory is another special feature
of CUDA. Each block can obtain part of the on-chip shared

Authorized licensed use limited to: Zhejiang University. Downloaded on February 27,2010 at 06:27:45 EST from IEEE Xplore. Restrictions apply.

TAO et al.: GPU-BASED SHOOTING AND BOUNCING RAY METHOD FOR FAST RCS PREDICTION 499

Fig. 5. Four test targets: (a) generic missile, (b) ship , (c) airplane A, and (d) airplane B.

TABLE I
THE GEOMETRY SIZE AND MEMORY REQUIREMENT OF THE FOUR TARGETS (KB). THE BASIC KD-TREE MEMORY CORRESPONDS TO THE INFORMATION OF THE

KD-TREE NODES AND THE ASSOCIATED TRIANGLE IDS OF LEAF NODES. THE ROPES KD-TREE MEMORY IS THE STORAGE REQUIREMENT OF THE ROPES

AND THE BOUNDING BOX OF LEAF NODES

memory and its associated threads can access this shared
memory in one clock circle if there is no band conflicts [11].

The grid size on the virtual aperture is proportional to the pro-
jected area of the target and the frequency. For example, the
maximum grid size in our experiments is 7364 1502. Each
ray needs to record the last intersected position and each ray
tube also requires 8 float number for the scattered field. There-
fore, the required memory would be larger than 500 M for this
example. As is known to us, the amount of available memory on
the GPU is very limited, for example, NVIDIA GeForce 8800
has only 768 M device memory. For electrically large targets,
the large amount memory requirement limits the scalability of
the GPU-based SBR. We resolve this problem by partitioning
the grid into several sub-grids. The GPU-based SBR is applied
to each sub-grid and the final scattered field is calculated by
summing up scattered fields of sub-grids. In our implementa-
tion, the sub-grid size is 1024 1024, which corresponds to
about 48 M device memory.

IV. RESULTS AND DISCUSSION

Several different types of targets were tested to evaluate the
proposed GPU-based SBR. As shown in Fig. 5, there are a
generic missile, a simple ship, and two airplanes. The geometry
size and triangle number of the four targets are listed in Table I.
As can be seen from Table I, the four targets vary in the geom-
etry size and are modeled using different triangle numbers. The
missile and ship have simple sharps, while structures of two
airplanes are much more complex.

The monostatic RCS of the four targets were computed from
0 to 360 in 361 equal-spaced incident directions at 10 GHz
frequency. The incident direction for the four targets is also il-
lustrated in Fig. 5. As can be observed from Fig. 5, the incident
direction for the ship is rotated around the axis, while the
others are rotated around the axis. At most fifth-order reflec-
tion was considered for complex structures of the four targets.

The ray tube size of the grid on the virtual aperture is 3 mm
.

The memory requirements of the four targets in our imple-
ment are available in Table I. The memory requirements of tri-
angles for the ray-triangle intersection test on the GPU are rela-
tively small, at most 1257.5 kB memory in the four targets. The
leaf numbers of the kd-tree depend on the geometrical struc-
ture. The simple structure only has a small number of leaf nodes,
while a large number of leaf nodes are generated for the com-
plex structure. The kd-tree memory requirements of the four tar-
gets are also listed in Table I. The basic memory requirement
includes the information of the kd-tree nodes and the associated
triangle IDs of leaf nodes. Due to the stackless kd-tree traversal
algorithm, additional memory is required for the information
about the ropes and bounding box of leaf nodes. Fortunately,
these memory requirements are not very large compared with
the basic kd-tree memory requirements, as shown in Table I.

One advantage of the stackless kd-tree traversal algorithm is
that it can effectively reduce the number of interior-node tra-
versal steps through the ropes. Additionally, the reflected ray,
which directly starts at the leaf node containing the origin of the
ray, further eliminates interior-node traversal steps. Table II de-
scribes the average interior-node traversal steps of the primary
ray and the reflected ray. As seen clearly from Table II, the inte-
rior-node traversal steps of stackless ray tracing are significantly
reduced compared with that of standard ray tracing, especially
the reflected ray.

The total computation time of all incident angles are shown
in Table III using the original SBR, the CPU kd-tree accelerated
SBR, and the proposed GPU-based SBR. As demonstrated in
[18], the kd-tree accelerates the ray tracing in the SBR and the
computation time is extremely reduced compared with the orig-
inal method. The reason is that most rays could find the intersec-
tion in the first leaf nodes visited [8], and it eliminates the un-
necessary ray-triangle intersection tests. In our experiments, the

Authorized licensed use limited to: Zhejiang University. Downloaded on February 27,2010 at 06:27:45 EST from IEEE Xplore. Restrictions apply.

500 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 2, FEBRUARY 2010

Fig. 6. The comparison of our GPU-based SBR result and the MLFMM result for the trihedral corner reflector. (a) HH-polarization result for the incident plane
� � �� at 3 GHz, (b) VV-polarization result for the incident plane � � �� at 6 GHz.

Fig. 7. The comparison of our GPU-based SBR result and the MLFMM result for the ship at 10 GHz. (a) VV-polarization result, (b) HH-polarization result.

TABLE II
THE AVERAGE INTERIOR-NODE TRAVERSAL STEPS (PER RAY) OF THE FOUR

TARGETS FOR STANDARD RAY TRACING AND STACKLESS RAY TRACING

TABLE III
THE COMPUTATION TIME OF THE FOUR TARGETS OF THE ORIGINAL SBR, CPU

KD-TREE ACCELERATED SBR, AND PROPOSED GPU-BASED SBR (SEC)

average number of ray-triangle intersection tests of the primary
ray is 16.55, 8.75, 7.16, and 5.88 for the four targets, respec-
tively. With the reduced ray-triangle intersection tests, the pro-
posed GPU-based SBR method is 3 orders of magnitude faster
than the original method. Due to high computing power on the
GPU and the stackless kd-tree traversal algorithm, the proposed
GPU-based SBR is about 30 times faster than the CPU kd-tree

accelerated SBR. It also can be observed from Table III that
the speedup factor increases with the geometry size and com-
plexity. This further verifies that the proposed GPU-based SBR
are highly effective for electrically large and complex targets.

The trihedral corner reflector is a typical benchmark target
for verifying the high frequency multiple-bounce scattering [2],
[29]. The trihedral corner reflector used in this paper is con-
structed of three right-angled triangles with the side length 1 m.
Two different incident parameters are used to evaluate the accu-
racy of the proposed GPU-based SBR: (a) from 0 to 90 on
the plane with an angular resolution of 1 at 3 GHz;
(b) from 0 to 90 on the plane with an angular res-
olution of 1 at 6 GHz. As the valid checking of ray tubes in
the second step of the GPU-based SBR is very strict, the dis-
carding of divergent ray tubes would affect the accuracy of the
RCS prediction. In order to reduce the impact of divergent ray
tubes, we divide the grid on the virtual aperture into denser ray
tubes to obtain more accurate results. As the CPU-based
SBR result is almost the same as the GPU-based SBR result, we
only compare the GPU-based SBR result and the MLFMM re-
sult. The monostatic RCS results of the HH-polarization using
the parameter (a) and the VV-polarization using the parameter
(b) are shown in Fig. 6. The comparison shows a good agree-
ment between the GPU-based SBR result and the MLFMM re-
sult. The computation time of the MLFMM are approximately

Authorized licensed use limited to: Zhejiang University. Downloaded on February 27,2010 at 06:27:45 EST from IEEE Xplore. Restrictions apply.

TAO et al.: GPU-BASED SHOOTING AND BOUNCING RAY METHOD FOR FAST RCS PREDICTION 501

Fig. 8. The comparison of our GPU-based SBR + TW-ILDC result and the MLFMM result for the ship at 10 GHz. (a) VV-polarization result, (b) HH-polarization
result.

3.75 and 27.47 minutes per-angle at 3 GHz and 6 GHz, respec-
tively. In contrast to this, the total computation time of all inci-
dent angles and polarization types are 8.73 and 32.17 seconds
in the GPU-based SBR.

The ship illustrated in Fig. 5(b) as well as the measured data
is also widely used to validate the accuracy of the SBR [5]–[7].
Since some of the geometric details are unknown, a new ship
is modeled based on the available geometric parameters and
a MLFMM result is used to verify the accuracy. Fig. 7 shows
the monostatic RCS comparison from 0 to 360 in 361 equal-
spaced incident directions at 10 GHz. A good agreement is ob-
served between the two results, and the deviation may be partly
due to the edge-diffraction effect [30]. To verify this, the edge-
diffraction effect of the ship is computed based on truncated-
wedge incremental-length diffraction coefficients (TW-ILDC)
[31] on the CPU, and the diffraction fields are added to the result
of the GPU-based SBR. The SBR + TW-ILDC result is com-
pared with the MLFMM result in Fig. 8. The SBR TW-ILDC
result is more accurate than the SBR result, especially in the in-
cident angles after 180 . This is due to the fact that the relative
impact of the edge-diffraction effect, as the secondary dominant
scattering mechanism, can not be ignored in the incident angles
after 180 , where there is only the first-order scattered field.

V. CONCLUSION

It has been shown that thanks to the rapid development of
graphics hardware and the stackless kd-tree traversal algorithm,
ray tube tracing and electromagnetic computing of the SBR are
fully implemented on CUDA GPU Computing environment.
Ray tube tracing, based on the stackless kd-tree traversal al-
gorithm, can quickly evaluate the exit position and field, and
electromagnetic computing is integrated into the process of cen-
tral ray tracing, including the calculation of the reflected field
using the GO and the scattered field using the PO integral. Nu-
merical results show excellent agreement with the exact so-
lution, and demonstrate that the GPU-based SBR method can
greatly reduce the computation time. Furthermore, the proposed
GPU-based single-pass ray tracing can also be adapted to other
computational electromagnetic methods, such as statistic ray
tracing for RCS prediction [29] and radio propagation [32].

ACKNOWLEDGMENT

The authors would like to thank Prof. T. Cui from South
East University for providing the MLFMM method used in this
paper.

REFERENCES

[1] H. Ling, R. C. Chow, and S. W. Lee, “Shooting and bouncing rays:
Calculating the RCS of an arbitrarily shaped cavity,” IEEE Trans. An-
tennas Propag., vol. 37, no. 2, pp. 194–205, 1989.

[2] J. Baldauf, S. W. Lee, L. Lin, S. K. Jeng, S. M. Scarborough, and C.
L. Yu, “High frequency scattering from trihedral corner reflectors and
other benchmark targets: SBR vs. experiments,” IEEE Trans. Antennas
Propag., vol. 39, no. 9, pp. 1345–1351, 1991.

[3] C. A. Balanis, Advanced Engineering Electromagnetics. New York:
Wiley, 1989.

[4] P. Sundararajan and M. Y. Niamat, “FPGA implementation of the
ray tracing algorithm used in the XPATCH software,” in Proc. IEEE
MWSCAS’01, Dayton, OH, Aug. 2001, vol. 1, pp. 446–449.

[5] S. H. Suk, T. I. Seo, H. S. Park, and H. T. Kim, “Multiresolution grid
algorithm in the SBR and its application to the RCS calculation,” Mi-
crow. Opt. Technol. Lett, vol. 29, no. 6, pp. 394–397, 2001.

[6] K. S. Jin, T. I. Suh, S. H. Suk, B. C. Kim, and H. T. Kim, “Fast ray
tracing using a space-division algorithm for RCS prediction,” J. Elec-
tromagn. Waves Applicat, vol. 20, no. 1, pp. 119–126, 2006.

[7] J. K. Bang, B. C. Kim, S. H. Suk, K. S. Jin, and H. T. Kim, “Time
consumption reduction of ray tracing for RCS prediction using efficient
grid division and space division algorithms,” J. Electromagn. Waves
Applicat., vol. 21, no. 6, pp. 829–840, 2007.

[8] V. Havran, “Heuristic Ray Shooting Algorithms,” Ph.D. dissertation,
Univ. Czech Technical, Prague, 2000.

[9] Y.-B. Tao, H. Lin, and H.-J. Bao, “Kd-tree based fast ray tracing for
RCS prediction,” Progress Electromagn. Res. (PIER), vol. 81, pp.
329–341, 2008.

[10] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation
on graphics hardware,” Comput. Graphics Forum, vol. 26, no. 1, pp.
80–113, 2007.

[11] NVIDIA CUDA Compute Unified Device Architecture Programming
Guid 1.1. Internet Draft NVIDIA CORPORATION, 2008 [Online].
Available: http://developer.nvidia.com/object /cuda_get.html

[12] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose
molecular dynamics simulations fully implemented on graphics pro-
cessing units,” J. Comp. Phys., vol. 227, no. 10, pp. 5342–5359, 2008.

[13] N. A. Gumerov and R. Duraiswami, “Fast multipole methods on
graphics processors,” J. Comp. Phys., vol. 227, no. 18, pp. 8290–8313,
2008.

[14] N. A. Carr, J. D. Hall, and J. C. Hart, “The ray engine,” in Proc.
Graphics Hardware’02, Sep. 2002, pp. 37–46.

[15] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing on
programmable graphics hardware,” ACM Trans. Graph., vol. 21, no. 3,
pp. 703–712, 2002.

Authorized licensed use limited to: Zhejiang University. Downloaded on February 27,2010 at 06:27:45 EST from IEEE Xplore. Restrictions apply.

502 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 2, FEBRUARY 2010

[16] T. Foley and J. Sugerman, “Kd-tree acceleration structures for a GPU
raytracer,” in Proc. Graphics Hardware’05, Jul. 2005, pp. 15–22.

[17] D. R. Horn, J. Sugermann, M. Houston, and P. Hanrahan, “Interactive
k-d tree GPU raytracing,” in Proc. Interactive 3D Graphics’07, Aug.
2007, pp. 167–174.

[18] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek, “Stackless kd-tree
traversal for high performance GPU ray tracing,” Comput. Graphics
Forum, vol. 26, no. 3, pp. 415–424, 2007.

[19] J. M. Rius, M. Ferrando, and L. Jofre, “High frequency RCS of complex
radar targets in real time,” IEEE Trans. Antennas Propag., vol. 41, no.
9, pp. 1308–1318, 1993.

[20] J. M. Rius, M. Ferrando, and L. Jofre, “GRECO: Graphical electro-
magnetic computing for RCS prediction in real time,” IEEE Antennas
Propag. Mag., vol. 35, no. 2, pp. 7–17, 1993.

[21] Z.-L. Yang, L. Jin, and W.-Q. Li, “Accelerated GRECO based on GPU,”
in Proc. Radar’06, Oct. 2006, pp. 1–4.

[22] Y.-B. Tao, H. Lin, and H.-J. Bao, “From CPU to GPU: GPU-based
electromagnetic computing (GPUECO),” Progress Electromagn. Res.
(PIER), vol. 81, pp. 1–19, 2008.

[23] M. J. Inman and A. Z. Elsherbeni, “Programming video cards for
computational electromagnetics applications,” IEEE Antennas Propag.
Mag., vol. 47, no. 6, pp. 71–78, 2005.

[24] S.-X. Peng and Z.-P. Nie, “Acceleration of the method of moments
calculations by using graphics processing units,” IEEE Trans. Antennas
Propag., vol. 56, no. 7, pp. 2130–2133, 2008.

[25] J. D. Macdonald and K. S. Booth, “Heuristics for ray tracing using
space subdivision,” Proc. Graphics Interface’89, pp. 152–163, Jun.
1989.

[26] M. Pharr and G. Humphreys, Physically Based Rendering: From
Theory to Implementation. New York: Morgan Kaufmann, 2004.

[27] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives
for GPU computing,” in Proc. Graphics Hardware’07, Aug. 2007, pp.
97–106.

[28] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson, CUDA
Data Parallel Primitives Library 2008 [Online]. Available: http://www.
gpgpu.org/developer/cudpp/

[29] F. Weinmann, “Ray tracing with PO/PTD for RCS modeling of large
complex objects,” IEEE Trans. Antennas Propag., vol. 54, no. 6, pp.
1797–1806, 2006.

[30] R. G. Koujoumijan and P. H. Pathak, “A uniform geometrical theory of
diffraction for an edge in a perfectly conducting surface,” Proc. IEEE,
vol. 62, pp. 1448–1461, 1974.

[31] P. M. Johansen, “Uniform physical theory of diffraction equivalent
edge currents for truncated wedge strips,” IEEE Trans. Antennas
Propag., vol. 44, no. 7, pp. 989–995, 1996.

[32] T. Fügen, J. Maurer, T. Kayser, and W. Wiesbeck, “Capability of 3-
D ray tracing for defining parameter sets for the specification of future
mobile communications systems,” IEEE Trans. Antennas Propag., vol.
54, no. 11, pp. 3125–3137, 2006.

Yubo Tao received the B.S. and Ph.D. degree in
computer science and technology from Zhejiang
University, Hangzhou, China, in 2003 and 2009,
respectively.

He is currently a Postdoctoral Researcher in the
State Key Laboratory of CAD&CG of Zhejiang Uni-
versity. His research interests include computational
electromagnetics, GPU programming, and scientific
visualization.

Hai Lin received the Ph.D. degree in computer sci-
ence from Zhejiang University, Hangzhou, China.

Currently, he is a Professor of Visual Computing
in the State Key Lab. of CAD&CG, Zhejiang Univer-
sity. He was a Visiting Professor in the Department
of Computing and Information Systems, University
of Bedfordshire, U.K. His research interests include
computer graphics, scientific visualization, volume
rendering and computational electromagnetics.

Hujun Bao received the Bachelor and Ph.D. degrees
in applied mathematics from Zhejiang University,
Hangzhou, China, in 1987 and 1993.

He is Currently the Director of the State Key
Laboratory of CAD&CG of Zhejiang University.
He is also the Principal Investigator of the Virtual
Reality Project sponsored by Ministry of Science
and Technology of China. His research interests
include realistic image synthesis, realtime rendering
technique, digital geometry processing, field-based
surface modeling, virtual reality and video pro-

cessing.

Authorized licensed use limited to: Zhejiang University. Downloaded on February 27,2010 at 06:27:45 EST from IEEE Xplore. Restrictions apply.

